Michael Goldberg, PhD, is an Assistant Professor in the Department of Cancer Immunology & AIDS at the Dana-Farber Cancer Institute.

Dr. Goldberg graduated Summa Cum Laude with an Hon. B.Sc. in Biological Chemistry from the University of Toronto, where he was recognized as a University of Toronto Alumni Association Scholar and “Leader of Tomorrow.” He received an M.Phil. in BioScience Enterprise from the University of Cambridge, where he focused on the critical factors to the development of successful biotechnology clusters. Dr. Goldberg completed his Ph.D. in Biological Chemistry under the supervision of Institute Professor Robert Langer at the Massachusetts Institute of Technology, where he was a member of the founding class of the Harvard-MIT Division of Health Sciences and Technology’s Graduate Education in Medical Sciences program. His doctoral research focused on the synthesis, screening, and application of a novel class of materials for the delivery of RNAi therapeutics. He pursued post-doctoral training in the laboratory of Nobel Laureate and Institute Professor Phillip Sharp in the Koch Institute for Integrative Cancer Research at the Massachusetts Institute of Technology, where he worked to develop cancer-specific RNAi therapeutics. His research has been published in leading journals, including Nature and Nature Biotechnology. Dr. Goldberg is the recipient of several awards, including the Bergmann Memorial Research Award, the University College Merit Award, and the Gordon Cressy Student Leadership Award.

His current research interests include cancer immunotherapy and the creation of innovative platforms for drug development and delivery by combining the tools of chemistry, engineering, immunology, molecular biology, and nanotechnology. He seeks to work with the OCRF to develop combination therapies that can silence both genes involved in driving cancers and genes involved in inhibiting the natural immune response against cancer. It is hoped that invoking the immune system could generate a memory response that might constitute a curative intervention.

Visit the Goldberg Lab website for more information.